
1

Bring ideas to life
VIA Student Incubator

PROJECT REPORT

SGM I1

Alexandru Diaconu 143481
Zoltan Szabolcs Cseri 169362

Jonas Nikolajsen 231727

Henrik Kronborg Pedersen
Michael Vilhelmsen

ICT Engineering
12.05.2016

COURSE ASSIGNMENT

2

Introduction
 Developing model (Jonas)
Design (10 pager) (Alex)
 Page 1 (Alex)
 Page 2 (Alex & Jonas)
 Page 3 (Alex & Jonas)
 Page 4 (Jonas)
 Page 5 (Jonas & Zoltan)
 Page 6 (Zoltan)
 Page 7 (Jonas)
 Page 8 (Jonas)
 Page 9 (Jonas)
Implementation
 Modeling (Zoltan)
 Hardware (Alex)
 Scripting (Alex & Jonas & Zoltan)
Testing
Result
Discussion
Conclusion

3
4
5
5
6
7
8
9
10
11
12
13
14
14
18
20
27
28
29
30

CONTENT

3

In this project we were asked to create a game for the pc, which had a special con-
troller. The controller was a real life Tuk Tuk which we had to modify with hardware
inputs so we had controls on the Tuk Tuk as inputs for the game. We were allowed
to make the game with VR (Virtual Reality), but didn’t manage to implement it so
everything was working. Our process of work is displayed and explained in the model
below.
The final product is a game called Tuk Tuk the Rush where the player will drive a Tuk
Tuk though different levels to save historical monuments. We have thereby fulfilled
most of the requirement (All the must and should) that was set for this project.

1. Introduction

4

The project will follow the developing model above. This model is used to delegate the work, but bear
in mind that there are loose lines between all of the elements in this model. Alex could help Zoltán
with some work on the level creation and the other way around. There are also elements of the devel-
oping process that is not in this model. All three group members have taken part of creating the finale
edition of the game.

Fig 1. Developing model

2. Developing model

Idea generation

Planning

Level Creation

Model scripting

Combining

Hardware
implementation

Controll scriptingCamera and mode
scripting

Graphical research

Testing

Deployment

Zoltan
Modelling

Alex
Hardware

Jonas
Level design

5

3. Design (10 pager)
3.1 Page 1

Fig 2. Game Poster

6

Game Flow describtion

Running the .exe file will launch the app and bring the player to the title screen. From the tittle screen
the player have four options: New game, Options, Story, Quit. New game will launc the first level of
the game. By completion of this level, level two of the game will be loaded. If the player fails to com-
plete the level will restart and the player can try again.

Story / Game Summary

TUK TUK the Rush brings awareness about preserving and protecting the cultural environment around
the world. Being aware of an imminent danger the player has to find a way out from the mazes that are
placed on the historical site of different monuments. The TUK TUK vehicle has a bomb that detonates
in a certain amount of time. If the player reaches to it’s destination (outside the maze) than the bomb
is defused and the cultural site is safe.

During the game, the user has 3 bonus options that he can use to facilitate finding the good path, fast-
er. However, every bonus lasts only for a few seconds and can be used only once per level. Therefore
the player can stop the time and than navigate for a few seconds. After the time expires, the TUK TUK
return to its original position from when the button was pressed. Another bonus is flying a drone for a
few seconds in order to have an overview of the maze. The third and last option is the Road Run. This
option is available only in the China and Rome levels. When pressed, the option proceeds in showing
the good path by firing up torches situated on the walls. Therefore if you are on the good path you will
see the torches light up, if not you will know that you are on a wrong path.

3.2 Page 2

Launch App

Title screen

New GameOptions

Extras

Story

Game menu

Level One

Level Two

Level Three

Unlock with code

lose = restartLevel

lose = restartLevel

lose = restartLevel

Exit

Fig 3. Game Description

7

3.3 Page 3

Options takes the player to another menu where you can select graphic and sound options. With an
unlock the player get access to the Extras menu where a surprise is hidden.

The Story brings the player to a third menu where a looping story telling tells the player about the
monuments he/she is trying to save.

The game only has one character, the player.

Player: (Jonas)
The player is represented as a guy from the National preservation group. He is trying to rescue some of
the old historical monuments around the world from destruction. The player will control this charac-
ter driving a Tuk Tuk through maze obstacles trying to escape certain monuments with a bomb, and
thereby getting it to safety to disarm it.

The Tuk tuk will work as an extension of the player. Changing skins each level to represent the eviro-
ment you are playing in.

Character control: (Alex)

Handling the character is done by using the physical TUK TUK input controls.

Steering and Acceleration - steering the handler from right to left allows the character to rotate to
right or left. By switching the right handler towards the user, it allows to input the acceleration for
the vehicle.

Gear shifting - as start point, the gear system is set to neutral. as long as the input gear button is
pressed the gear index moves back and forth: from F (forward) to N (neutral) to R (reverse) and
backwards. The gear handler is located on the right Tuk tuk physical handler. The position of the gear
index can be noticesed with the help of the thre LEDs, each gear position having it’s own color.

Forward-> Green
Neutral ->Yellow
Reverse -> Red

Options input- on the left side of the handler, there are 3 switching buttons representing the input
activation for the 3 game bonuses. The activation process triggers also the LED switching for each one
of the buttons. Therefore, if a button is pressed, the LED, corresponding to that button switches on.

Breaking- breaking the vehicle is performed by pressing the physical pedal from the bottom right
side.

8

Game outline (Jonas)

Serious action-adventure game
The serious part of the game is the part where the player is trying to save old historical monuments
from extension by bad people there is trying to blow them up with a bomb. Between each level, there
will be a loading scene with an educational story about the environment the player is going to play in
next.

This is where the game transition into the action part. The player has an amount of time to get the
bomb away from the monuments.
The adventure part of the game is the player driving around in old historical environments. Like you
will see in games like Indiana Jones.

Main Gameplay (Jonas)

Tuk Tuk the rush: Is a maze obstacle race against time. The player has to escape the maze before the
time run out to save the monument. During the escape the player have three functionality’s to assist
him/her to escape the maze. (see the chapter Page 7)

All the controls in Tuk Tuk the rush is optimized for using a real life Tuk Tuk as the controller for the
game. This is done by the use of an Arduino and hardware inputs. (see chapter Hardware for further
explanation).

Fall back controls is also implemented.
As levels are completed they are unlocked for free play. Thereby the player can freely choose between
the levels he/she have completed. And replay them to practice or to set a faster time.

Platform specific features

It is planned to implement the the real life Tuk Tuk controller together with VR(Virtual Reality). By
doing this the player will have the real experience of sitting in the Tuk Tuk and driving it around inside
the game. This is a platform specific future because the player need the Tuk Tuk and the hardware
inputs to be able to try this.

The fallback controls will allow the game to be played on normal inputs as keyboard or a gaming
controller.

3.4 Page 4

9

3.5 Page 5
Game World

The game world is setup in different iconic eras of History such as Ancient Egypt, Medieval China and
Rome where the player have to save the monuments of that time from destruction. The scenes are
based on mazes placed near Monuments. In the prototype of the game, three levels are designed, each
level with their own design based on a specific monument. All three levels are implemented with a
similar concept:
• The maze walls
• Light sources (small sources along the road. When the helping function Road Run is activated these
sources will light up the right path.)
• Directional Light to give to base lightning for the scene
• Environmental background

Level 1:
Level one is taking place in the old Egypt. The mission is to save the old pyramids and statues from
destruction. The maze in this level has a triangular design to symbolize the pyramids. The walls are
built with the Egyptian design by representing hieroglyphs and wall reliefs. The environment is based
on the authentic setup of desert with the Pyramids as well as some huge statues around the maze to
give a monumental experience.

Level 2:
Level two is placed in the Chinese Empire, where the mission is to save the Great wall. This maze has
a square design and the walls in this level are based on traditional Chinese architectural design from
the Medieval China. The landscape outside the maze the player will experience green forest and the
Great wall running across the mountains. The maze is filled with trees and vases to honor the Chinese
gardens.

Level 3:
Level three is placed in Rome, taking place inside the great Colosseum. The maze design for this level
is ellipsoid to fit inside the Colosseum model. The walls are built to match the old Roman Empire
walls where the columns and the bras reliefs were used as decorations. Also the lightning along the
way when the Road Run us active is illuminated with the torches attached to the walls. As the maze is
placed in the Colosseum it raising high around the player where the spectator area can be seen.

For future aspect of the game many different places and time periods can be covered such as:

• Hanging Gardens of Babylon, Babylon
• Colossus of Rhodes, Greece
• Pyramid of the Sun, Mexico
• Taj Mahal, India
• Eiffel Tower, France

• Statue of Liberty, USA
• Hagia Sofia, Turkey
• Leaning Tower of Pisa, Italy
• Stonehenge, England

10

Gameplay experience

The first thing what the player sees is the start screen, the main menu with the options: New Game,
Options, Stories and Quit. The New Game option starts the game in the first levelThe Option button
gives access to the option menu where different options can be chosen and an extra feature is im-
plemented (See the chapter Page 7 for more information) The Story button gives access to the story
menu. Here is a story telling about each monument the player will save during the game. The Quit
option is exiting the game.

When the player starts the game the gameplay begins with the player placed behind the steering
wheel in the TukTuk. From here he has to escape from the maze before the countdown reaches zero.
The world is set back to the corresponding era of the scene with the atmospheric music and the envi-
ronment.

The overall feel of the game and its world of classic American action-hero movies with a bit of twist
with the timeline where the fate of history is at stake and the danger of blowing up will create pressure
on the player.

During the gameplay a countdown is displayed which informs the player how much time is left before
the bomb will explode.

 The Tuk Tuk is equipped with three special abilities which puts the science fiction elements into the
game. (See the chapter Page 7 for more information about the abilities).
The thrill of finding the path before the bomb goes off and the joy of finding the exit creates a unique
experience for the player. By finding the first exit the player is teleported into another level to save the
next monument. With each level the maze is getting harder which builds up the pressure as well as the
satisfaction of level completion.

The sounds, textures and models are matching the scenes to create an environment that gives the
feeling of the historical time the player is presented in.

3.6 Page 6

Fig 3. Egypt, China & Rome levels

11

3.7 Page 7
Mechanics

The main mechanic in “TUKTUK the Rush” is the Tuktuk what is driven by the player through a maze
which is able to accelerate, brake and turn. By turning in sharp angle fast it can roll over, due to the
fact it only has three wheels and therefor isn’t very stable sideways, so the player has to be careful.
To assist the player completing the maze three tools is presented; Drone View, Holo Stretch and Road
Run (See description below). These three tools are usable one time each for all levels.

Power-ups

• Drone View
When activated the camera change position and fly up into the air, giving the player the view of a
drone. Thereby the player has a certain amount of time to look around and study the maze to find the
right road out of the maze.

• Holo Stretch
When activated the Tuk Tuk enters a holographic mode, stopping the time and giving the player some
free time to drive around the maze without losing any time. When the ability runs out, the Tuk Tuk
position is set to the same place the player activated the ability and time starts to count down again.

• Road Run
When activated the light sources in the scene is activated to display the right road to get out of the
maze. The player then has a certain amount of time to follow the up lit road.

Fig 4. Drone view Fig 5. Holo stretch Fig 6. Road Run

12

Enemies

This game doesn’t have AI or attacking enemies. The enemy in this game is the time and the players
own actions and decisions. The game is based on a race against the time. If the player doesn’t manage
to complete the level within the given time he/she dies. The bomb the player is trying to escape with,
to save the maze, will explode and thereby kill the player and destroy the monument.
The player is his/her own worst enemy if the player takes a wrong turn in the maze time will be lost
and thereby making it harder to escape the maze in time without the bomb exploding.

Future development

As part of future development of this project there is two aspects that could be added as “Enemies”

1. Obstacles / Slowing enemies
Obstacles could be added to the game world to make it harder to conquer the maze and escape the level
in time.

Obstacles:
• Traps
• Gaps
• Ramps
• Moving walls

Slowing enemies could be another aspect to have as enemies. These would try to disrupt the player’s
gameplay by shooting/throwing objects that will slow the drive speed of the Tuk Tuk and thereby valu-
able time will be lost.

2. Medal race / Competing
Medal race could be added to the game to make the race against time harder/more fun. Together with
the medal race would follow unlockable new levels, custom skins and upgrades of helping abilities.

Power ups:
• Nitro
• Invincibility
• Slow time

Competing could be added to make the game more social. Compete against your friends to get the best
time or compete against world ranks to have the best time in the world.

All these aspects are put in future development due to deadline time of the prototype.

3.8 Page 8

13

3.9 Page 9
Bonus material

As one of the serious aspects of the game the story menu selection will have stories for each level that
will explain the story behind the specific monument the player will be trying to save in the specific
level. This will give the player insight to what he is trying to preserve from destruction. This can work
as a motivational factor.

Changing the Tuk Tuk model is an extra feature that is unlocked by a special code entered at the op-
tions menu. When the code is entered correctly, it will grant access to the extra scene where the player
can choose between three Tuk Tuk models to play with in all the scenes.

The original Via Tuk Tuk
The Chinese inspired Tuk Tuk
The roman inspired Tuk Tuk

When a Tuk Tuk is selected this Tuk Tuk will automatically be placed in all the levels.

Fig 7. Tuk Tuk VIA

Fig 8. Tuk Tuk Roma Fig 9. Tuk Tuk China

14

4.1 Modelling
Level Design

As the main concept of the game is to save the monuments from different time areas the level design
was quite easy from that point. Three iconic eras had been chosen for the game to take place: Ancient
Egypt, Medieval China and Rome (fig 10). All of these scenes should contain a famous monument
which creates the atmosphere.

As the key element of the game is the maze in each level a maze was set up. The player has to find the
right route to escape and save the monuments. As an example in Egypt nothing can be more iconic
than the pyramids and the desert so these elements had been recreated in the scene together with the
maze and some site improvements such as huge Egyptian god statues to create the epic feeling while
playing. To create the authentic experience for each scene unique walls had been designed for the era.
Taking these into consideration some research had been made how the ancient Egyptian walls looked
like in the temples and in the pyramids back in the time.

A low poly model was created with the distinctive features like: hieroglyphs, big stone bricked walls,
sandstone columns and wall reliefs. The main objective for the levels was to utilize as few props as
possible to smooth the runtime of the game and still create an immersive experience for the player.

3D model design

The models for the game have been created in Autodesk 3ds Max which is a specially designed tool for
3D modelling and animation. The challenge in the model design was to create detail rich content while
keeping the polygon amount as low as possible (fig 11). Models made of vertices or in other name tri-
angles and the more detailed it is the more vertices the model consists of. . In the game the Video Card
have to render all these vertices in the scene and if the amount is to big the FPS (Frames per Second)
will drop below 60 which will create lags. To avoid that, the faces which are not visible for the player
were deleted to reduce the amount of triangles to be processed. The thumb of rule was to create mod-
els which are used multiple times in each scene with the polygon count around five to eight-thousand
and max eighty thousand polygons where it has been used only once.

4. Implementation

Fig 10. Game screenshots

15

When exporting the models from 3ds Max to Unity the format and the vector alignment had to be
matched. The standard format for models in Unity is .FBX and the vector alignment that the Y axis is
facing upwards, while the standard format in 3ds Max is .MAX and the vector Z is facing up. By export-
ing the model the .FBX format and the Y axis facing upwards option had to be selected.

3D models to Unity

For adding external models into the scene they have to be imported. The procedure is to right click on
the project area, import new asset and select the model to import. To make the model fully compati-
ble with the lightning scene the UV maps has to be generated within Unity, to do that clicking on the
model and selecting Generate UV´s and click on Apply button the system will automatically generate
the UV´s (fig 13).

Some components had been added in Unity such as Box Collider for preventing the player to go
through walls. The behaviour of the of the walls have been modified to Static (fig 12) this improves the
runtime of the game by reducing the Draw Calls. Basically the system packs all the static elements and
sends just one call instead of many individual calls which greatly smoothens the runtime. The models
imported can be easily added by dragging and dropping them into the scene. There they can be freely
edited like scale, rotate or move. By copying the same wall prefabs and not putting many unique ele-
ments into the scene the performance can be greatly boosted.

Fig 11. Wireframe view

Fig 12. Static

Fig 13. UV mesh

16

Materials and Texture

Materials are a vital part of the game
because it creates the realistic look of
the game. By standard each object in
the scene is assigned with the Standard
Material which is a normal, grey colour
without any specific modifications. By
creating different materials with unique
properties and assigning them to the
models will bring the props alive.

To create a material, it is a good idea to
use textures or in other name images
which will give the characteristic of the
model (fig 14). By adding a Normal Map
as well to the Material the realism factor
will be boosted as it mimics the bumps
and tweaks of lightning on the surface of
the object. Moreover, by modifying the
Smoothness and the Metallic properties
of the material it is possible to create a
close to real-life experience (fig 15).

Fig 14. Wall object Fig 15. Import settings

Fig 16. Apply material

17

Lighting and Shadows

In order to create a realistic look it is necessary to put lights and shadows into the game. It will create
the real life impression for the user because there is nothing in the world without shadows and lights.
The light comes from a Light source in Unity, it can be: Point light, Spotlight, Area light and Direc-
tional light. For most of the scenes a Directional Light have been used as main Light Source, which
basically mimics the behaviour of the Sun, an point light which is infinitely far away. It will create the
shadows in the scene but all of them are completely black as they don’t have lights bouncing off from
the other surfaces (fig 16).

To create a realistic look the Global illumination or
GI has to be turned on. To enable it in the Direc-
tional light, the settings for shadow baking had to
be set up to mixed, so it will use Real Time as well
as pre-baked shadows for the game (fig 17). Real
Time Shadow are extremely expensive performance
wise, that is why it is good idea to pre-bake some of
them in the scene which won´t change during the
gameplay. In the same place it is possible to setup
the amount of bounces, the colour of the direction-
al light and the intensity. For the final step in the
Lightning window the lights and shadows had to
be baked and depending on the scene it will take a
while (fig 18). In our game the scenes are supported
with point lights as well as they are used for illu-
minating the area around the fire prefabs. They
behave differently as they have another parame-
ter called range. This is defining how far the light
should affect the area around it.

Fig 17. Shadow baking

Fig 18. Light properties

18

4.2 Hardware
In order to control the character by using unconventional inputs, several parts had to be installed
for different processes regarding the user experience. Therefore, several electronic accessories like
potentiometers, LEDs, switch buttons were installed on the physical Tuk Tuk. These allows an user to
have a similar experience as driving an actual vehicle. The communication between the game engine
and the user inputs is made with the help of an Arduino board.

Arduino

Regarding the virtual logic, the entire circuit is devided intro 4 main parts: Steering and acceleration,
gear shifting, options input and breaking. All 4 parts, are receiving inputs from different sensors.
These inputs are transformed and manipulated in order to be ready to sent to Unity Platform. Bas-
sically, the communication is done by using the same serial port read-write in both platforms. The
serial inputs processed by the Arduino board is then sent over the port to Unity, where it reads it line
by line. There are a total of 11 variables sent from one platform to another (see fig)

 Serial.println(
 String(stateStart) + “ “ +
 String(h / 100) + “ “ +
 String(v / 100) + “ “ +
 String(readingGear) + “ “ +
 String(stateReverse) + “ “ +
 String(stateNeutral) + “ “ +
 String(stateForward) + “ “ +
 String(stateOption1) + “ “ +
 String(stateOption2) + “ “ +
 String(stateOption3) + “ “ +
 String(stateBrake));
 delay(20);
---------------------------------------OUTPUT:

0 0.93 0.00 0.03 0 1 0 0 0 1 0 //Button option 2 pressed
0 0.92 0.00 0.02 0 1 0 0 0 1 1 //Button option 3 pressed
1 0.90 0.00 0.04 0 1 0 0 0 1 1 //Button start pressed

Fig 19. Light baking

Fig 20. Arduino code

19

Unity

These variables are then read and split in different elements in an array on the Unity part. Each ele-
ment represents an input from a certain sensor.

Observations

The port that the Unity has to pair with it has to be the same in which the Arduino is connected with
Receiving and transmiting data within a FixedUpdate() method may cause laging
In order to not overcharge the port with information, a delay of 20 ms had to be placed in the Arduino
code before sending new sets of data
Some sensor inputs were the original buttons from the Tuk Tuk vehicle. because of the lack of ground-
ing part, the analog ports (from the Arduino board) had to be used as the input value would never
reach 0 (only in case of current fluctuations).Therefore a threshold of 1020 has been set in order to
check if the button was pressed or not. the oscilation in an analog input may range between 300 and
1023 units (depending on the voltage and current source).

 public class CarUserControl : MonoBehaviour
 {
 public string port;
 SerialPort serial;
 ...

 private void Awake()
 {
 // get the car controller
 serial = new SerialPort(port, 9600);
 }

 private void Update()
 {
 if (!serial.IsOpen)
 serial.Open();

 //Read String lines from Arduino “console”
 string ArduinoData = serial.ReadLine();
 Debug.Log(ArduinoData);

 //Split the data taking the space as reference
 //and store it in an array (remember the order
 // sent by Arduino Serial Port)
 string[] data = ArduinoData.Split(‘ ‘);

 start = float.Parse(data[0]);
 steer = float.Parse(data[1]);
 accelerate = float.Parse(data[2]);
 readingGear = float.Parse(data[3]);
 reverse = float.Parse(data[4]);
 neutral = float.Parse(data[5]);
 forward = float.Parse(data[6]);
 o1 = float.Parse(data[7]);
 o2 = float.Parse(data[8]);
 o3 = float.Parse(data[9]);
 brake = float.Parse(data[10]);
...

Fig 21. input data reading from Arduino to Unity

20

4.3 Scripting

Controllers
Controller: Controller.cs

Functionality
• The functionality of the Controller.cs script is to set the timer before the explosion occures
• Set the attention timer to warn you that the time is about to end
• Set the drone duration for viewing the overall maze
• Set the explosion effects if the time runs out, as well as restarting the level
• Enable the fire for the good path
• Set up the GUI for the option and gear use
• Changing between tuk tuk models based on the selection process from the extras menu

Considerations
• The controller connects the main process from the input managment to execution.
• To change between the models, the controller is accessing a value of a script that is creating in the
•Menu Scene. However, the script contains the DontDestroyOnLoad(this.gameObject) method, which
allows to keep the script “alive“ between the scenes.

Output:

if (Input.GetButtonDown(“Drone”))
 {
 DroneSkill();
 }
 if (droneBool)
 {
 textDrone.SetActive(true);
 droneTime -= Time.deltaTime;
 secondsDrone = (droneTime % 60).ToString(“00”);
 textDrone.GetComponent<Text>().text = secondsDrone;
 }

 if (Input.GetButtonDown(“Holo”))
 {
 Debug.Log(“Start Holo”);
 HoloSkill();
 }
 if (Input.GetButtonDown(“Path”))
 {
 Debug.Log(“Start Path”);
 PathSkill();
 }

---------------------------------------METHOD EXAMPLE:

void DroneSkill()
 {
 droneBool = true;
 o1.SetActive(true);
 cameraControling.mode2 = true;
 cameraControling.mode1 = false;
 StartCoroutine(timeDrone());
 }

 void HoloSkill()
 {
 o2.SetActive(true);
 holo.startNow = true;
 holo.record = true;
 }

 void PathSkill()
 {
 o3.SetActive(true);
 Debug.Log(“Show Path”);
 fire.SetActive(true);
 }

if (timeLeft < timeAttention)
 {
 text.GetComponent<Text>().color = Color.red;
 label.GetComponent<Text>().color = Color.red;
 label.GetComponent<Text>().text = “HURRY!!!”;
 }

Fig 22. Triggering different options

Fig 23. Normal time vs critical

21

Car User Control: CarUserControl.cs

Functionality
• The functionality of the Car User Control.cs script is to store all the values received from the Arduino
• Steer and accelerate the vehicle.

Considerations
The Car UserControl.cs script is an import element from the CrossPlatformInput. To be able to move
the Tuk Tuk with the inputs from the Arduino sensors, the script was modified accordingly.

Output:

namespace UnityStandardAssets.Vehicles.Car
{
 [RequireComponent(typeof (CarController))]
 public class CarUserControl : MonoBehaviour
 {
 private CarController m_Car; // the car controller we want to use
 public string port;
 SerialPort serial;

 public bool tuktukenable;

 private void Awake()
 {
 // get the car controller
 m_Car = GetComponent<CarController>();
 serial = new SerialPort(port, 9600);
 }

 private void Update()
 {
 if (tuktukenable)
 {
 if (!serial.IsOpen)
 serial.Open();

 //Read String lines from Arduino “console”
 string ArduinoData = serial.ReadLine();
 Debug.Log(ArduinoData);

 //Split the data taking the space as reference
 //and store it in an array (remember the order
 // sent by Arduino Serial Port)
 string[] data = ArduinoData.Split(‘ ‘);

 start = float.Parse(data[0]);
 steer = float.Parse(data[1]);
 accelerate = float.Parse(data[2]);
 readingGear = float.Parse(data[3]);
 reverse = float.Parse(data[4]);
 neutral = float.Parse(data[5]);
 forward = float.Parse(data[6]);
 o1 = float.Parse(data[7]);
 o2 = float.Parse(data[8]);
 o3 = float.Parse(data[9]);
 brake = float.Parse(data[10]);
 }

 // pass the input to the car!
 float h = CrossPlatformInputManager.GetAxis(“Horizontal”);
 float v = CrossPlatformInputManager.GetAxis(“Vertical”);
#if !MOBILE_INPUT
 float handbrake = CrossPlatformInputManager.GetAxis(“Jump”);

 // float h = steer;
 // float v = accelerate;
 // float handbrake = brake;

 m_Car.Move(h, v, v, handbrake);
#else
 m_Car.Move(h, v, v, 0f);
#endif
 }
 }
}

Fig 23. Passing values to game object Fig 24. Different physical input sensors

22

Abilities

Holo stretch: Holo.cs

Functionality
• The functionality of the Holo.cs script is to start the event of the holo stretch ability.
• Store the position of the Tuk Tuk
• Pause the current game time
• Start a new timer
• Change camera effects

Considerations
To make a Tuk Tuk that could ride for free without spending time, to ways were considered.
1: Enable a secondary model and set the camera and controls to work on this model, so the player could
drive this model around for some time and then return to the original model.
2: Store the position of the original model, put on some camera effects, pause the time and let the
player drive this TukTuk around for some time before “teleporting” it back to the stored position.
The second option was chosen and the output was realized the following way.

Output:

void Update()
 {
 if(startNow == true)
 {
 if(startNow == true && record == true)
 {
 if (faded)
 StartCoroutine(startHolo());

 }
 text.SetActive(true);
 timeLeft -= Time.deltaTime;
 seconds = (timeLeft % 60).ToString(“00”);
 text.GetComponent<Text>().text = seconds;

 if (timeLeft <= 1)
 {
 if (fadedStop)
 StartCoroutine(stopHolo());
 }
 }
 }
---------------------------------------METHOD EXAMPLE:

IEnumerator startHolo()
 {
 controller.pauseTime = true;
 faded = false;
 fade.gameObject.SetActive(true);
 fade.GetComponent<CanvasRenderer>().SetAlpha(0f);
 fade.CrossFadeAlpha(1f, 0.3f, false);
 yield return new WaitForSeconds(0.3f);
 record = false;
 positionPlayer = player.transform.position;
 rotationPlayer = player.transform.rotation;
 bloomEffect.enabled = true;
 grayEffect.enabled = true;
 grayEffect.rampOffset = 1;
 fade.gameObject.SetActive(false);
 while (grayEffect.rampOffset > -0.05f)
 {
 grayEffect.rampOffset -= 0.01f;
 yield return new WaitForSeconds(0.001f);
 }
 }
 ...

Fig 25. Part of Holo.cs script Fig 26. A: normal B: start of holo C:end of holo D: back to position

A

B

C

D

23

Drone view: Drone.cs

Functionality:
• Implementation of the Drone view ability.
• Activate canvas effect
• Start coroutine
• Move camera position
• Wait for amount of time
• Reset camera position

Considerations:
To make the drone view follow the Tuk Tuk and the camera go back to the right position the use of
Empty child gameObjects were applied. These objects holds the position the camera should change to
during the script. When the empty gameObjects were placed as children under the Tuk Tuk model, the
camera would always follow the Tuk Tuk.

Output:

void Update()
 {

 if (mode1 == true)
 {
 if (!cameraChanging)
 {
 Debug.Log(“NORMAL CAMERA”);
 // StartCoroutine(MoveOverSpeed(mainCamera, position1.position, 10f));
 mainCamera.transform.position = position1.position;
 }
 }
 else if (mode2 == true)
 {
 if (!cameraChanging)
 {
 mode1 = false;
 Debug.Log(“DRONE VIEW”);
 if (recStart)
 StartCoroutine(recBeep());
 //Drone game mode. Camera switch position and floats in to the air.
 StartCoroutine(MoveOverSpeed(mainCamera, position2.position, 10f));
 droneUsed = true; //Drone has been used
 }
 }
 }

Fig 27. Part of Drone.cs script

Fig 28. Drone view

24

Road Run: Controller.cs

Functionality
• The Road Run ability isn’t using much code, therefore the few lines are placed in the Controller.cs
script
• Activate canvas effect
• Activate fire effects
• Wait amount of time
• Disable fire effects

Considerations
To make the right path light up with the fire effects two groups where made. A group for all the light
sources along the wrong path and a group for all the light sources along the right path. Then the code
should only light up the right path. This functionality is achieved by enabling all the fires under the
right path group and thereby start an effect script that makes the fire burn for an amount of time and
then fades out.
Output:

if (Input.GetButtonDown(“Path”))
 {
 Debug.Log(“Start Path”);
 PathSkill();
 }

void PathSkill()
 {
 o3.SetActive(true);
 Debug.Log(“Show Path”);
 fire.SetActive(true);
 }

Fig 29. Path trigger

Fig 30. China level fire

Fig 31. Rome level fire

Fig 32. Road Run

25

Menus: MainMenuScript.cs

Functionality
• The menus are made by the use of several canvases on the same scene. Navigating from one menu to
another is made by moving the camera position from one part of the scene to another.
• Sets the master volume
• Sets the resolution
• Sets the tuk tuk model
• Views the cultural story about the monuments from each level
• Quits the game

Considerations
In order to move from one position to another, several empty GameObjects where created with
different transform positions. Therefore everytime a button triggers accessing another menu, the
camera position swaps between the GameObjects positions.
In order to keep the choose of model, another script was created that stores the value. This script is
not destroyed when new scene is loaded.
Navigation can be made also by using the tuk tuk steering (to move up and down) and brake (to
Submit)

Output

if (optionPress)
 {
 main.transform.position = Vector3.Lerp(main.transform.position, optionsPosition.transform.position, 2f * Time.deltaTime);
 main.transform.rotation = Quaternion.Slerp(main.transform.rotation, optionsPosition.transform.rotation, 2f * Time.deltaTime);
 mainCanvas.SetActive(false);
 storyCanvas.SetActive(false);
 extrasCanvas.SetActive(false);
 // main.transform.Rotate(0, 0, -(1f * Time.deltaTime));
 // main.transform.Translate(new Vector3(-0.5f, 0, 0) * Time.deltaTime * 1f);
 }
 if (main.transform.position.x < 59f && main.transform.position.x > 18f)
 {
 optionCanvas.SetActive(true);
 }

Fig 33. Part of MainMenuScript.cs script

Fig 34. Main menu

Menus

26

Scene management

Scene management is made in several scripts. But combined the functionality would be as follow

Functionality
• Load scenes from menu/end level triggers
• Handle model swapping

Considerations
For this the considerations have been; how to make the winning condition of the game. Fade screens,
camera movement or other effects.
The final selection is to load a new level when we hit a trigger at the end of the level. This will load the
next level in the scene by the use of SceneManager.LoadsScene(scene) function.

Output

public class SceneLoad : MonoBehaviour
{

 // Use this for initialization
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {

 }

 public void LoadScene(string scene)
 {
 SceneManager.LoadScene(scene);
 }
}

MENU

LEVEL 1

LEVEL 2

LEVEL 3

lose = restartLevel

lose = restartLevel

lose = restartLevel

Fig 35. SceneLoad.cs script

Fig 36. Button trigger option

Fig 37. Scene loading game flow

27

5. Testing

Test 1
(Elizabeta Scriba)

One of our collegues tested out the game by
using the tuk tuk controls. The output was
overall good. The controls were responsive and
the game interactive. However, it was laging
a little bit and one of the options triggered
automatically.

Our conclusion is that sometime, because
the error tolerance from the tuk tuk inputs it
is high, the values needs to be adjusted and
evaluated by using the average operation. A
cause of the little bit of lagging might be the
delay for transimiting the data sets from one
platform to another.

Test 2
(Ana-Daniela Traista)

The second test was performed by an non-
student. This time the outcome was a little
bit better as the result of fixing attempt from
the previous test. However, the gear button
switch, because of the lack for grounding, it was
oscilating between values 0 and 1023 units. The
problem is the current that, the laptopt provided.
Therefore, we decided to install a switch button
(as safety) that has a grounding pin. After that,
the problem was solved, and therefore, we
succeded in fixing the major problems.

28

6. Result
The requirements of the project wast to make the game use Arduino for getting hardware inputs to the
game. It was a very challenging part as the group had a lack of experience working with the Arduino.
To make a controllable setup together with the TukTuk custom made gears and buttons was made to
get the inputs from the devices combine them as a string and then send it to Unity. Moreover as the
device is sending the signal as one big string it was separated into smaller parts by a protocol so each
individual input from the steering wheel to the buttons are clearly divided so Unity can make a use of
it.

One of the requirements of the project was to create menus where the navigation should be done by
using the TukTuk controls. It was a great challenge to make it happen as it is assigned to go up or down
by pressing a button in the keyboard in Unity, but as we are using a non-conventional method the
assigned button had to be “clicked” in script so it triggered the action. This was conqured by triggering
events that made a simulation of a button click.

The game features many custom made 3D-models which are specially designed for each scene. One
of the problems we experienced during the design part was if the game models are very detailed and
there is a large amount of the models in the scene it will affect the runtime of the game by introducing
lags to the game. They had to be designed in a way to keep the rich details while keeping the polygon
count down.

One of the main features of the game is the escape from the maze. To make it realistic the walls had
to be equipped with Box Colliders to stop the player from going through them. Moreover as there is
a bomb attached to the TukTuk, so when it explodes the TukTuk flies away. In order to do that a Box
collider have been place on the TukTuk and as it collides with other colliders the game automatically
pushes the car in an upwards direction giving the effect of blowing up. This was fixed.

In total the game features three scenes: Egypt, China and Rome. By using multiple levels it was hard to
pass the information from one scene to another as when the system is changing the level it destroys
every object in the previous scenes. To prevent that we created a counter for the selected Tuk Tuk and
parsed the value of the counter so we could select the right Tuk Tuk in each scene.

One of the biggest and hardest things was to make the game VR compatible. In our game we use
different camera positions for the special abilities. We experienced some bugs when the “Drone” flew
up but it didn´t come down again. As well as the UI is not visible on the VR camera. Therefore the game
isn’t VR compatible in this release.

29

7. Discussion
At the end of the project we as a group have an overall satisfied feeling about the project. We always
strive to do more and better. But time is a limiting factor both in the game and in the real world. If we
had more time to develop on the project, we think we could manage to make an even better game.

What would/could we have done differently?
Alex have been spending a lot of time preparing and implementing hardware for the Tuk Tuk. Some
time other groups didn’t have to use because they could use his implementation. His work power on
installing the hardware’s could have been used on the game development. We still think this have
been a good learning experience for the group to work with the hardware inputs.

Better code sharing
Find a better way to share projects so all can do more work at the same time, without crashing and
making the project all messy.

Better work distribution
Having a better plan of who is going to work on what. This will give less time wasted.
We would have liked to implement the finale project with VR(Virtual Reality) but was forced to put it
aside due to all our menus not working with the oculus.
Overall we are satisfied with the project and the finale product.

30

8. Conclusion
Taking a look at the requirements for this project we can conclude we have fulfilled all the must
include requirements, all of the should include requirements and one of the could. See the ones
included below. Besides the requirements from the project description we have managed to do the
following:

Create our own 3D-models
Create our own Materials
Make use of culling (the game engine only renders the watchable units off the camera, increase
performance)
Bake light and shadows
Build a full control setup for the Tuk Tuk
Doing an all nighter finishing the game and report

Fulfilled requirements
• The game must make use of the Arduino for input. Standard input (mouse+keyboard or controller/
joystick) may be used as a fallback, but the game should be designed with non-conventional input in
mind.
• The game must include audio.
• The game must feature menus. Keep in mind that these should be navigable without standard input.
• The game should include imported 3D-models.
• The game should include animation(s) that you have created.
• The game should include RayCasts, Collision events, or other Physics-based events.
• The game could include multiple scenes/levels.

Our conclusion of our final result is: we have a final product we are proud of to present. We have
managed to fulfill the necessary requirements and some extra. We have had a learning experience
through the whole project, learning new things each day.

